Электронные книги

Жанры
Реклама
Последние комментарии
От партнёров
Облако тегов

ПрофессииAn Introduction to Lagrangian Mechanics

An Introduction to Lagrangian Mechanics
Название:An Introduction to Lagrangian Mechanics
Автор:Alain J. Brizard
Издательство:World Scientific Publishing Company
ISBN:9812818375
Дата издания:2008-10-13
Страниц:276
Язык:Английский
Формат:pdf
Размер:1.70 MB

An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat s Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d Alembert that preceded Hamilton s formulation of the Principle of Least Action, from which the Euler Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh s procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory.
This textbook is suitable for undergraduate students who have acquired the mathematical skills needed to complete a course in Modern Physics.
Contents: The Calculus of Variations; Lagrangian Mechanics; Hamiltonian Mechanics; Motion in a Central-Force Field; Collisions and Scattering Theory; Motion in a Non-Inertial Frame; Rigid Body Motion; Normal-Mode Analysis; Continuous Lagrangian Systems; Appendices:; Basic Mathematical Methods; Elliptic Functions and Integrals; Noncanonical Hamiltonian Mechanics.





Нажмите для скачивания 9812818375Lagrangian_Mechanic_B.rar!9812818375Lagrangian_Mechanic_B.rar
Размер: 1.73 Mb(cкачиваний: 0)



Похожие книги

Информация

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


  • Valid XHTML 1.0 Transitional